Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence
نویسنده
چکیده
Monte Carlo analysis has become nearly ubiquitous since its introduction, now over 65 years ago. It is an important tool in many assessments of the reliability and robustness of systems, structures or solutions. As the deterministic core simulation can be lengthy, the computational costs of Monte Carlo can be a limiting factor. To reduce that computational expense as much as possible, sampling efficiency and convergence for Monte Carlo are investigated in this paper. The first section shows that noncollapsing space-filling sampling strategies, illustrated here with the maximin and uniform Latin hypercube designs, highly enhance the sampling efficiency, and render a desired level of accuracy of the outcomes attainable with far lesser runs. In the second section it is demonstrated that standard sampling statistics are inapplicable for Latin hypercube strategies. A sample-splitting approach is put forward, which in combination with a replicated Latin hypercube sampling allows assessing the accuracy of Monte Carlo outcomes. The assessment in turn permits halting the Monte Carlo simulation when the desired levels of accuracy are reached. Both measures form fairly noncomplex upgrades of the current state-of-the-art in Monte-Carlo based uncertainty analysis but give a substantial further progress with respect to its applicability. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models
Efficient sampling strategies that scale with the size of the problem, computational budget, and users’ needs are essential for various sampling-based analyses, such as sensitivity and uncertainty analysis. In this study, we propose a new strategy, called Progressive Latin Hypercube Sampling (PLHS), which sequentially generates sample points while progressively preserving the distributional pro...
متن کاملUsing Supervised Learning to Improve Monte Carlo Integral Estimation
Monte Carlo (MC) techniques are often used to estimate integrals of a multivariate function using randomly generated samples of the function. In light of the increasing interest in uncertainty quantification and robust design applications in aerospace engineering, the calculation of expected values of such functions (e.g. performance measures) becomes important. However, MC techniques often su ...
متن کاملA sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory
Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and he...
متن کاملSimplex Elements Stochastic Collocation in Higher-Dimensional Probability Spaces
A Simplex Elements Stochastic Collocation (SESC) method is introduced for robust and efficient propagation of uncertainty through computational models. The presented non– intrusive Uncertainty Quantification (UQ) method is based on adaptive grid refinement of a simplex elements discretization in probability space. The approach is equally robust as Monte Carlo (MC) simulation in terms of the Ext...
متن کاملAn Empirical Evaluation of Sampling Methods in Risk Analysis Simulation: Quasi-monte Carlo, Descriptive Sampling, and Latin Hypercube Sampling
This paper compares the performance, in terms of convergence rates and precision of the estimates, for six Monte Carlo Simulation sampling methods: Quasi-Monte Carlo using Halton, Sobol, and Faure numeric sequences; Descriptive Sampling, based on the use of deterministic sets and Latin Hypercube Sampling, based on stratified numerical sets. Those methods are compared to the classical Monte Carl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rel. Eng. & Sys. Safety
دوره 109 شماره
صفحات -
تاریخ انتشار 2013